Sustainable synthesis of amino acids by catalytic fixation of molecular dinitrogen and carbon dioxide†

نویسندگان

  • Manuel Rivas
  • Luís J. del Valle
  • Pau Turon
  • Carlos Alemán
چکیده

The industrial process of nitrogen fixation is complex and results in a huge economic and environmental impact. It requires a catalyst and high temperature and pressure to induce the rupture of the strong N–N bond and subsequent hydrogenation. On the other hand, carbon dioxide removal from the atmosphere has become a priority objective due to the high amount of global carbon dioxide emissions (i.e. 36 200 million tons in 2015). In this work, we fix nitrogen from N2 and carbon from CO2 and CH4 to obtain both glycine and alanine (D/L racemic mixture), the two simplest amino acids. The synthesis, catalyzed by polarized hydroxyapatite under UV light irradiation and conducted in an inert reaction chamber, starts from a simple gas mixture containing N2, CO2, CH4 and H2O and uses mild reaction conditions. At atmospheric pressure and 95 °C, the glycine and alanine molar yields with respect to CH4 or CO2 are about 1.9% and 1.6%, respectively, but they grow to 3.4% and 2.4%, when the pressure increases to 6 bar and the temperature is maintained at 95 °C. Besides, the minimum temperature required for the successful production of detectable amounts of amino acids is 75 °C. Accordingly, an artificial photosynthetic process has been developed by using an electrophotocatalyst based on hydroxyapatite thermally and electrically stimulated and coated with zirconyl chloride and a phosphonate. The synthesis of amino acids by direct fixation of nitrogen and carbon from gas mixtures opens new avenues regarding the nitrogen fixation for industrial purposes and the recycling of carbon dioxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Effects of Carbon Nanotubes on Complexation of Some Amino Acids via Cobalt Cation Catalyst

In this research, investigation of the adsorption isotherms and the effect of solution conditions such as pH and concentration of complexation of some amino acids with cobalt(II) nitrate six-hydrate upon multi-wall type carbon nanotube (CNT) were done. The adsorption capacity of complexation of amino acids onto the surface of carbon nanotube increased with the pH from acidic to alkaline. At pH ...

متن کامل

Simulation of methanol synthesis by hydrogenation of carbon dioxide recovered from combustion gases of Fluid Catalytic Cracking Unit of Abadan Refinery

Refineries produce about four percent of the global carbon dioxide emissions, close to one billion tons per year. Globally, the refining sector is the third largest producer of carbon dioxide after the electricity generation and cement industry.This greenhouse gases is a major cause of global warming and climate change and is a serious threat to human health and the environment. One way to redu...

متن کامل

Amino acids interacting with defected carbon nanotubes: ab initio calculations

The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT) isinvestigated by using the density-functional theory (DFT) calculations. The adsorption energies andequilibrium distances are calculated for various configurations such as amino acid attaching to defectsites heptagon, pentagon and hexagon in defective tube and also for several molecular orientationswi...

متن کامل

Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand

Synthesis and reactivity of iron-dinitrogen complexes have been extensively studied, because the iron atom plays an important role in the industrial and biological nitrogen fixation. As a result, iron-catalyzed reduction of molecular dinitrogen into ammonia has recently been achieved. Here we show that an iron-dinitrogen complex bearing an anionic PNP-pincer ligand works as an effective catalys...

متن کامل

Amino acid/KI as multi-functional synergistic catalysts for cyclic carbonate synthesis from CO2 under mild reaction conditions: a DFT corroborated study.

Naturally occurring amino acids were identified as efficient co-catalysts for the alkali metal halide-mediated synthesis of cyclic carbonates from carbon dioxide and epoxides under mild, solvent free reaction conditions. The binary system of histidine/potassium iodide gave an appreciable turnover number of 535 for propylene oxide in 3 h. Detailed studies evaluating a variety of amino acids reve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018